
BioE/MCB/PMB C146/C246: Topics in Computational Biology and Genomics

Lecture 1) Introduction to Sequence Evolution
21 Jan 2003

Scribe: Derek Chiang Reader:

INTRODUCTION TO SEQUENCE ALIGNMENT

Finding the best alignment between two sequences is a fundamental problem in
computational biology. We briefly consider this problem to illustrate the importance of efficient
algorithms in this field.

How many possible alignments exist between any two sequences of length m and n
(assume n > m)? For example, consider the two sequences: ACGCAT
 AGCGCA

If no gaps are allowed, there can be n possible alignments, so time complexity is O(n)1.

If any number of gaps is allowed, as long a gap is not aligned to another gap, there
number of possible alignments is given below. The factorial terms come from the number of
ways to choose columns in which to insert k gaps in the two sequences.

nm

k knn
n

kmk
m 42

)!(!
!

)!(!
!

0 π
≈

−

−

∑
=

The time complexity of searching through every possible alignment would make this
method infeasible. In future lectures, we will discuss an important technique, called dynamic
programming, to reduce this time complexity to O(n2). Other heuristic methods, such as
BLAST, can accomplish even faster searches.

Dynamic Programming applied to Fibonacci numbers
Fibonacci numbers are defined recursively by the following formulae:

 F(n) = F(n – 1) + F(n – 2)
 F(1) = 1
 F(0) = 1

1 Big-oh notation summarizes the worst-case time or memory complexity of an algorithm, as a function of the input
data size. Only the highest exponential term matters, e.g., O(3n2 + 5n) should always be re-written as O(n2). The
following list is sorted in ascending order of time complexity (algorithms closer to the top are better).
O(1) Constant Exact formula for Fibonacci numbers
O(log n) Logarithmic Binary search through a sorted list of numbers
O(n) Linear Reading through a list of numbers
O(n log n) Merge sort
O(n2) Quadratic Insertion sort; dynamic programming alignments
O(kn) Exponential Enumerating all possible words of length n with an alphabet of size k
O(n!) Factorial Naïve method to search all alignments of length n

2

A naïve way to write a program to compute the 5th Fibonacci number would be to solve
for F(5) recursively. The program execution can be represented by a tree, with branches
representing nested levels of recursion (note that branching from one of the F(2) terms has been
omitted). The branching terminates when either of the base cases, F(0) or F(1), is reached.

The time complexity of a recursive implementation is approximately O(n1.6). Of course,

this procedure is not the intuitive way (for humans; computers do what they’re told) to compute
Fibonacci numbers. Instead, we would simply store the intermediate values by writing down the
Fibonacci sequence. This process of storing intermediate values, called memoization or caching,
turns out to be the dynamic programming solution to the Fibonacci problem, which has time
complexity O(n).

n 0 1 2 3 4 5

F(n) 1 1 2 3 5 8

There is an even faster way, i.e. O(1), to obtain the nth Fibonacci number, using Binet’s
formula (but actually attributable to Euler):

φ
φ

−Φ
−Φ

=−
nn

nF)1(

where Φ = (1 + √5) / 2 also known as the golden mean
 and φ = (1 – √5) / 2

3

SEQUENCE EVOLUTION

Effects of Sequence Mutations

Causes of mutations Possible effects on proteins Possible effects on organism

Errors in DNA replication
DNA damage
Errors in crossover

Silent: codon degeneracy
Conservative mutation
Changes to protein structure
Change in active site specificity

Lethal
Masked by duplication or
other redundancy
Superior fitness

In summary, mutations can be grouped under 3 categories. Silent mutations to the same
or similar amino acids may not affect the protein’s function. Negative mutations may interfere
with protein activity by affecting its structure or specificity. In rare cases, positive mutations
may introduce improvements by changing the protein’s structure or specificity.

If an organism dies due to a mutation causing a malfunction in the protein, the mutation
should disappear. However, if the mutation is retained (and observed in extant sequences), then
we assume that it had been accepted at some point in evolutionary history. Although selection
occurs after every round of DNA replication, it occurs on the level of protein function.

Consider a hypothetical example of sequence evolution for an essential gene:

Years ago DNA sequence
similarity

Protein sequence
similarity

Protein structure
similarity

Functional similarity

800 million D % < D % High Pretty well conserved

400 million Very low Moderately Moderate Pretty well conserved

Today Very low Very low Quite similar Pretty well conserved

Imagine that a gene duplication occurred about 200 million years ago. There are several
possible scenarios for the other gene. One possibility is that one copy’s sequence changed even
more rapidly, and perhaps even gained a new function, than the other.

Detecting Evolutionary Relationships
As a rule, related sequences become more and more divergent, rather than more similar.

In general, protein structure similarity > protein sequence similarity > DNA sequence similarity.
Therefore, most powerful tools for discovering evolutionary relationships between proteins
involve structural comparisons. But even in the absence of protein structure, comparisons
between protein sequences perform much better than comparisons between DNA sequences.

Since function involves some complicated relationship among structural similarity,
protein sequence similarity and DNA sequence similarity, the inference of functional similarity
can be difficult. In particular, similarity at a sequence or structural level does not necessarily
guarantee functional similarity.

Mutation rates are not constant among different classes of protein sequences. Examples
of protein families that evolve quickly include host immune response proteins, as well as cell

4

surface receptors of pathogens. Examples of proteins that evolve slowly include polymerases,
histones and cytochrome c (which is part of the electron transport chain for ATP synthesis). In
general, there is a high correlation between the number of interactions at protein surfaces and
mutation rate.

Mutation rates may also vary within proteins, due to particular features within proteins
(such as active site residues of enzymes, residues important for the protein fold, etc.)

For both of the cases mentioned above, note that the mutation rate variations are
primarily due to variations in selective pressures on the protein sequence, not positional
variations in the mutability of DNA.

Vocabulary for Evolutionary Relationships
When we align sequences, we do not observe the ancestral sequences, only those present

in the extant organisms.

Two sequences that are evolutionarily related are homologous. Note that this term is
NOT tautologous to similarity; in particular, two sequences that are similar are NOT necessarily
homologous. In addition, the concept of homology (just like pregnancy) is indivisible: either a
pair of sequences is homologous or not (see the Fitch articles on the course website).

The terms orthologs and paralogs are applied based on the evolutionary history of
sequences. Orthologous genes are related to each other via species divergence. Paralogous
genes are related to each other via gene duplication.

Think carefully about the application of these terms to the example below, which will
help you with your first problem set.

